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Numerical Simulation of Geometric Scale Effects

in Cylindrical Self-Field MPD Thrusters

Michael R. LaPointe I

Sverdrup Technology,I_i_,Brook Park, Ohio 44142

Abstract

A two-dimensional,two-temperature, singlefluidmagnetohydrodynamics code which incorporatesclassical

plasma transport coefficientsand Hall effectshas been developed to predictsteady-state,self-fieldMPD
thrusterperformance. The governingequationsand numerical methods ofsolutionare outlinedand discussed.

Experimental comparisons are used tovalidatemodel predictions.The model accuratelypredictsthrustand

reproducestrendsinthe dischargevoltagefordischargecurrentsbelow experimentallymeasured onset values.

However, because the model does not includeelectrodeeffectsthe calculatedvoltagedrops are significantly

lowerthan experimentally measured values.Predlctlonsof thrustand flow efficiencyare made for a matrix

offifteencylindricalthrustergeometries assuming a fullyionizedargon propellant.A maximum predicted

specificimpulse of 1680 s isobtained fora thrusterwith an anode radiusof 2.5 cm, a cathode radiusof 0.5

cm, and equal electrodelengthsof2.5cm. A scallngrelationisdeveloped to predict,within limits,the onset

ofcylindrical,self-fieldthrusterinstabilityas a functionof geometry and operating condition.
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thrusterexitarea,m _

magnetic field,T

electriccharge,C

electricfield,V/m

thrust,N

gravitationalacceleration,9.8 m/s t

specificimpulse, s

currentdensity,A/m 2

dischargecurrent,A

length (anode,cathode),m

Boltzmann const.,J/K

electron,ion mass, kg

mass flow rate,kg/s

number density,m -3

pressure (ion,electron),Pa

exitplane pressure,Pa

background gas pressure,Pa

power, W

energy exchange term, J/s

radius (anode, cathode), m

gas constant, J/K-mol

generalsource term

thrustchamber inner surface,m 2

ion (electron)temperature, K

velocity,m/s
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inlet (exit) velocity, m/s

discharge voltage, V

external volume, m 3

total volume, m s

finite difference coeffs.

differential equation coeffs.

differential equation coeffs.
permittivity of free space, 8.854 × 10 -12 C2/N-m _

viscosity, kg/m-s

plasma flow efficiency

ion (electron) thermal conductivity, Watt/m-K
second coeff, of viscosity, kg/m-s

ion (electron) Coulomb logarithm

permeability of free space
electron-ion collision frequency, s -x

density function
mass density, kg/m 3

electrical conductivity, mho/m

electron collision time, s

electric potential, V

viscous dissipation function

magnetic field streamline

viscousforcevector

convergence factor

electroncyclotronfrequency,s-I

electron Hall parameter

ion, electron
radial coordinates



I. Introduction

The magnetoplasmadynamic (MPD) thruster has been advocated for a variety of propulsion applications,
from near-Earth orbit raising maneuvers 1 to the long duration interplanetary missions envisioned by the

National Space Exploration Initiative? In its basic form, the MPD thruster consists of a cylindrical cathode

surrounded by a concentric anode (Figure 1). An arc struck between the electrodes ionizes a gaseous

propellant, and the interaction of the current with the self-induced magnetic field accelerates the plasma to

produce thrust. Steady-state MPD thrusters have been operated at power levels approaching 600 kW, while
pulsed, quasi-steady devices have operated in the megawatt power range, z The engine is robust and designed

to provide low, continuous thrust at specific impulse values between 1,000 and 10,000 s.

MPD thruster performance is currently limited by low thrust efficiency in the operating regimes of interest, 3'4'_

with significant fractions of the applied power deposited into the anode. For low power steady-state thrusters,

the anode power fraction may reach 80%, leaving only 20% for plasma ionization and acceleration? Experi-
mentally, the use of applied magnetic fields 3'4 and flared electrode geometries G have been shown to increase

the specific impulse and improve thruster efficiency, although for reasons poorly understood at present.
The specific impulse for a self-field MPD thruster is related to J2/rh, a parameter which is often used to

characterize MPD thruster performance. 3 High values of j2/m correspond to predominantly electromagnetic

acceleration, and provide higher values of specific impulse; low values of J2/r:a correspond to predominantly

electrothermal acceleration, and lower values of specific impulse. MPD thruster efficiency typically increases

with increasing JZ/rh, but is limited by the occurrence of discharge voltage oscillations which result in severe
electrode erosion. Several mechanisms have been proposed to explain the onset of these instabilities, includ-

ing anode mass starvation, r flow choking due to enhanced back-EMF, s'9 and the triggering of electrothermal
and gradient-driven instabilities as the plasma approaches full ionization. I°'11'1_ it appears that different

operating conditions may trigger one or a combination of the proposed mechanisms, with a concomitant

reduction in thruster performance and lifetime.

MPD thrusters have undergone extensive experimental development since the 1960's, 3-5 but a comprehensive

theoretical analysis has been hampered by the complex nature of the coupled electromagnetic and gasdynamic

acceleration processes. Analytic and numerical simulations using ID and quasi-lD approximations of the

magnetohydrodynamic fluid equations have provided valuable insights into both self-field and applied-field
MPD thruster operation, but they are by definition constrained in their ability to predict detailed thruster

performance. The removal of such limitations via 2D and quasi-2D modeIing has become practical with the

emergence of high-speedcomputational facilities, allowing model validation and refinement using the existing
experimental data base, while in return establishing a theoretical basis to guide further experimentation. A

review of MPD thruster technology and a survey of recent MPD thruster models is provided by Myers et
al.. 3

Self-FieldMPD Thruster Scaling Studies.

Steady improvements in MPD thruster performance have occurred primarily via the relatively expensive

method of device fabrication and testing, with the more robust designs surviving this evolutionary process

to undergo further testing and refinement. However, with the variety of thruster geometries currently
under development, progress toward understanding the impact of geometric scaling on performance has been

delayed by an incomplete empirical data base and by the replication of experimental effort. The limited

research efforts which address performance variations due to geometric changes in the electrode shapes are
reviewed below.

One of the first comprehensive attempts to verify the effects of geometric variation on MPD thruster perfor-

mance was reported by King, 13 who combined an experimental approach with a simplified 1D gasdynamic



modelto evaluateanodemodificationsin thePrincetonbenchmarkthruster.Kingfoundthat increased
electrodelengthsanddecreasedanoderadiiallowanincreasein thedischargecurrentbeforetheonsetof
thrusterinstability,with thedecreasedanodeorificecontributingmoststronglyto the increasedstability.
Theresultsled to thedesignof a modifiedflaredanodethruster,whichconsistedof twostraightanode
channelsconnectedbya flaredanoderegion.Thedesignprovedto haveequivalentvoltage-currentcharac-
teristicsanda slightlyhigherthrustefficiencycomparedto a straightcylindricalMPDthrusterof similar
dimensions.

In adetailedexperimentalstudy,Gilland14comparedtheperformanceofthePrincetonstandardbenchmark
thrusterandthemodifiedflaredanodethrusterwith theirgeometrichalf-scalecounterparts.In eachcase,
thrusterperformancewasdeterminedtobeprimarilyafunctionofpropellantmassflowrateandtheratioof
theelectroderadii,butwasgenerallyindependentof thegeometricscaleofthethruster.Thescaledthruster
performancewassimilarfor similarmassflowrates,althoughthehalfscalethrusterswerelessefficientat
equalpowerlevelsandexhaustvelocities.

Schmidt15combinedanempiricalapproachwith a simpletheoreticalmodelto analyzethefull scaleand
halfscalePrincetonbenchmarkandflaredanodethrusters.Empiricaldatawereemployedto generatean
analyticexpressionfor voltagescalingin thedevices.Anexpressionwasassumedfor thecurrentdensity
distributionandusedto evaluatethrusterforcecomponents.An analyticexpressionwasusedto estimate
thecontributionsbyelectrothermalforces,andthemodelwasemployedto analyzetheperformanceof the
full scaleandhalfscalethrusters.Thehalfscalethrusters,operatedat halfthepowerlevelsof thefull scale
versions,werefoundto havesimilarefficienciesandincreasedspecificimpulse,in generalagreementwith
theexperimentalfindingsof Gilland.Themodelwasto beusedin conjunctionwith anAir ForceRocket
PropulsionLaboratory(nowAir ForcePhillipsLaboratory)experimentalprogramto developa variable
geometryMPDthruster,designedspecificallyto addressgeometricscalingissues.Cassadyet al. 16 provide
a brief description of the program, but little information has been published in the intervening years.

Heimerdinger 17 performed an experimental evaluation of two thruster geometries, one a straight cylindrical

channel and the second a straight cylindrical channel with diverging area near the exit plane. The constant

area channel suffered from strong current concentrations near the inlet and exit regions, resulting in enhanced

electrode erosion. The diverging electrode geometry diminished the discharge current densities and reduced
the electrode erosion, and demonstrated that electrode geometries could be tailored to minimize ohmic

heating and associated electrode erosion.

Martinez-Sanchez is developed an analytic model using steady-state, quasi-lD MHD flow equations, and eval-

uated a variety of electrode geometries. Optimum performance was obtained with a converging-diverging

anode, which allowed more uniform current concentration along the electrodes. In descending order of per-

formance were geometries which employed a diverging anode, a converging anode, and a straight cylindrical

anode. The poor performance of the cylindrical electrode geometry was due to thermal pressure effects

retarding the flow near the exit plane of the thruster. The results confirmed that electrode contouring can

be effective in controlling the current distribution and associated energy dissipation effects.

The experimental results of Kunii et al. 19 confirmed that straight cylindrical thruster geometries did in-
deed suffer from current concentrations near the base and tip of the cathode, with subsequent severe cath-

ode erosion. A diverging anode was found to produce the most uniform current distribution; however, a

converging-diverging anode showed severe current Concentrations and electrode erosion, in contrast to the
analytic models discussed above. In a comparison of cylindrical and flared thruster geometries, Uematsu

et al. _° demonstrated that the performance of a straight cylindrical thruster was improved by recessing the

cathode, at the expense of increasing the cathode erosion rate. The flared anode thrusters were again shown

to provide better performance, with better stability and less erosion, than cylindrical electrode geometries.
In a recent modeling effort, Lefever-Button and Subramaniam _1 employed a quasi-ld model with finite rate

kinetics to compare cylindrical and flared thruster geometries. For fixed operating conditions, the flared ge-



ometrlesproducedhigherexhaustvelocities,reducedthecurrentdensityconcentrationsneartheexitplane,
andincreasedthepropellantionizationfractioncomparedto straightcylindricalthrustergeometries.

Preblex°compiledacomprehensivedatabaseofexperimentallydeterminedonsetvaluesforself-field,cylin-
dricalMPDthrustersoperatedwithargonpropellants.A stabilitymodel,developedto simulatetheonset
of electrothermalinstabilities,wascombinedwithaone-dimensionalMHDcodeandusedto evaluateonset
conditionsfor avarietyofthrusterscalelengths.Throughanextensiveliteraturesearch,Preblecatalogued
severalmechanismswhichcouldleadto improvedthrusterperformance.Longerelectrodelengths,smaller
interelectrodespacing,andpropellantinjectionneartheanodewerefoundto significantlyincreasethevalue
ofJ2/rh before the onset of thruster instability, allowing thrusters to operate more efficiently with higher spe-

cific impulse. The trends predicted by the model correlated very well with experimentally determined onset

conditions, and demonstrated that an electrothermal instability could precipitate global thruster instability

over the range of geometric scales considered in the study.

In addition to the onset of global thruster instability, plasma microinstabilities may arise which lead to an

increase in the plasma resistivity, raising the voltage drop across the plasma and lowering thruster efficiency.

Niewood et al. 11 combined a quasi-lD flow model with nonlinear dispersion relations to show that modified

two-stream and electrothermal instabilities may arise in MPD thruster plasmas, with the onset of operational
instability closely coupled to the occurrence of the electrothermal instability. Choueiri 2_ and Choueiri et

al. 23 derived general nonlinear dispersion relations for current-driven plasma instabilities, and determined

that lower-hybrid waves are the dominant microinstability for most MPD thruster operating regimes. The

existence of lower-hybrld waves has been experimentally verified in both low power and high power MPD
thrusters _, 24

Although limited in extent, significant information has been obtained from the experimental and numerical

scaling studies outlined above. In general, flared electrode geometries provide more uniform current distri-

butions, reduce electrode erosion, and enhance thruster stability. Straight cylindrical thrusters appear to
operate more stably with longer electrodes, smaller interelectrode separations, and propellant injection near

the anode. Half-scale reductions in thruster size might not significantly alter thruster performance for equal

mass flow rates, although half-scale geometries are less efficient at equal power levels and exhaust velocities.

Unfortunately, this impressive list of maxims is not yet sufficient to guide thruster designs toward an optimal
configuration. Several uncertainties remain, such as the optimum scaling of electrode length versus thruster

diameter, the impact of electrode length on thruster performance and efficiency, and the combined effect

of geometric scale and operating condition on MPD thruster stability. The two-temperature MPD thruster

model described below has been employed in an effort to address some of these lingering issues for cylindrical,
self-field MPD thrusters.

II. Two-Temperature MPD Thruster Model

The two-temperature MPD thruster model is an extension of the single fluid, single temperature MPD
code discussed in Reference [25]. Separate electron and ion energy equations have been incorporated into

the steady-state, viscous, compressible, single fluid magnetohydrodynamic equations, which are written in

cylindrical coordinates with assumed symmetry about the centerline. The plasma is assumed to be fully,

singly ionized, and is described by a perfect gas equation of state. The inclusion of separate electron and ion
temperatures permits refined calculations of the classical plasma transport coefficients, which provide more

accurate estimates of the plasma voltage drop, viscous flow losses, and thruster efficiency.

IIa. Electromagnetic Field Equations.

The basic set of electromagnetic equations includes the full complement of Maxwell's equations:

(a) V.g = 0 (b) V× g=_,,j (1)



(c) v._ = po/_o_0 (d) V×_- a_
Ot - 0

which incorporate the steady-state, single fluid plasma approximations. A general Ohm's law of the form:

is used to relate the current density j to the plasma velocity _' and the electric (E) and magnetic (B) fields.

Ion slip terms are neglected due to the assumption of full ionization. The electrical conductivity _r is given

by the classical Spitzer-Harm conductivity for a fully ionized plasma: 2G

(r= 1.53x 10-2 T31_ (3)
lnAe.

where Te is the electron temperature in degrees-Kelvin, lnA_ is the electron Coulomb logarithm:

lnAe _ 23 -- ltl, -[1.22 × 103_ 1/2 ]-T:/-_ (4)

and n is the (single fluid) plasma number density expressed in particles per cubic meter. The electron Hall
parameter fl is the product of the electron cyclotron frequency (w_.) and the electron collision time (re):

-_ 9.6×,o

where m is the electron mass, e is the electron charge, and B is the magnitude of the local magnetic field.

Equation 2 may be rearranged to solve for the electric field distribution:

/_=-V¢= 1 []+ ft ( )1 ( )

whose components are given by:

1[ o ]E_ = -Or = -_ jr+ B (JoB* -j*Bo) -(vaB,-v, Ba)

Eo - 0¢ _ o (7)
0a

[ ° ]0¢ 1 j, + (j_Bo - joBr) - (vrBo - voB,)
E, -- cgz - o- -B

The radial electric field is integrated from cathode to anode to find the potential drop ¢ across the plasma.

The divergence of Eq. 6 may be used to generate a Poisson equation for the potential, or assuming quasineu-
trality a simple Laplace equation may be solved to give the potential distribution, with the calculated plasma

fall providing the necessary boundary conditions. The first method is rigorously correct, while the second

method is computationally faster; both have been tested, and yield essentially identical results for the plasma

potential distribution.

A magnetic transport equation may be derived by combining Maxwell's equations with the generalized Ohm's
law:

v×g - 0_
8t



Defining/3 = f_/(crB) and ¢ = rBo, the azimuthal component of the above equation can be written:

where

020 0¢ 0¢ 02¢
Or---¢+ _1 -aT + _2 0_ + _3¢ + Oz2 = s (9)

(!1oo )
( 10o 2#_ ¢__0/3 )_2 -- -g0-;-¢-_ -+ rot +uo_, (10)

( roy. 0 .1)"Y3 = - I_ocr [ Or r + Oz J

where the source term S incorporates effects of an applied magnetic field, and is equal to zero for the self-

field thruster under consideration. Once the magnetic transport equation is solved for ¢, the value of Bo is

readily obtalned. The azimuthal magnetic field is a function of the total discharge current J, and through

the relation ¢ = rBo _ r(J/r) _ J, the function ¢(r, z) = constant may be used to represent lines of total
enclosed current.

Returning to the Maxwell equations, the radial and axial current densities are obtained from the calculated

magnetic field distributions:

10Bo
jr - (11)

t_. Oz

1 (!O(rB0))J" - /Io

The azimuthal current density jo vanishes due to the absence of applied radial or axial magnetic fields in
the self-field MPD thruster.

IIb. Fluid Equations.

The fluid equations are based on the conservation equations of mass, momentum, and energy. Conservation

of mass for a compressible fluid is given by:

V. (p_) = 0 02)

which can be written:

o(rp,_) o(rp_,)..... + _ 0 (i3)
Or Oz

where p is the plasma mass density. Defining _ = rp, the mass conservation equation takes the simplified
form:

°-_'_ + _ 0 (14)
Or Oz

which is solved for _, from which the value of p is determined.

Momentum. The conservation of momentum, including viscosity, is expressed in vector form as:

;(_.v)_'=-vp+ (;× _) + _ (15)



wherep is the plasma pressure and k_ is the viscous force vector:

2 [V_+V(V _]+2(V7 V)_'+V7×(V×_ (16)= -_v [7(v ._] +7 • •

The viscosity 7 for a fully ionized plasma is given by: 2z

where T/ is the ion temperature, M is the ion mass, rn is the electron mass, e is the electron charge, kB is
Boltzmann's constant, ni=l for a singly ionized plasma, and, for a fully ionized gas (or -=- 1),

[ °']A=2 ln(l+_ _) l+a_ =O.386

P \ Or + v, Oz

The radial component of the momentum equation is used to solve for the radial velocity vr :

(: °9op 40.,
- Or + -j=Ba-v" _ + 3r0r] + got- + Or

Ov, 07 47 02v, 02v, 77O_v= O_ Ov, 2 071Ov,
+ -Oz- Oz + -3--_0; _- + 70z _- + -_"Or-Oz + Oz Or 3 Or Oz

and may be recast in the form:

where

and

O_vT 10v. 2 Or, 3 37 02v, -S,
7_-_ +r'_-_ +r'sT-r'w+ 4 0z_- -

r_ = + Or 4

4 o; - p_=

(7 oTh

(18)

(19)

(20)

( Op_j, Bo+ 7OZv, 070v, 2070v, pyre.)S,=. 43 -Or ---30rOz + Oz Or 30r Oz + (21)

There are no radial or axial magnetic fields in the self-field MPD thruster, hence no azimuthal momentum

is generated. The axial momentum component is given by:

O_v= (_ 07) Or= 4070v,
/" Or, Ov=_ Op + j, Bo + + + +

+ _o-_ _ +N +or -Sb_ +b) +3o_o-_

which yields an equation for the axial velocity v,:

02v= iOr= _Or=
o,:r + r= or + r, -o2 +

47 02v=
- -S, (23)

30z 2



where

and

(7 )
r_ : (40_ )\ 30z - pv_

(24)

s, _ oz + jr Bo + _ + _ - _ _ + Or ] + _ O_O---S

Energy. The electron and ion energy equations are adapted from Mitchner and Kruger, 2_ converted to steady-

state form, and rewritten in terms of the plasma mass density. Grouping terms by order, the electron energy

equation may be written:

. O_T_
O_T_ r_ OT_. OTe _ F_T_ + _ - -So (26)_.-_-_ + -g< + r_-_; 0_

where 7'.. is the electron temperature, _;e is the Spitzer-Harm electron thermal conductivity: 26

75(4_reo) _kD (kBT¢)S/_ lO-, (27)
_ = 327rl/2ml/2e4 lnA. .._ 2.55 x 10- lnA_

and the equation coefficients are:

r_ _° 0_ 3_ + _pRv_r Or

_ _pRv, (28)Oz

Z_ : pR + _-r + Oz ]

The electron energy source term Sc is given by:

S. = ]. (/_ + Y ×/3) - AQ_i (29)

where the first term on the right represents joule heating of the plasma electrons, and the second term

represents an energy exchange between the electrons and plasma ions:

rn pR(T, - Ti)v,, (30)
AQ_i = 3_

with the electron-ion collision frequency given by:

v.i = 1.836 x 10 -_ plnAe
MT]/2

The steady-state ion energy equation takes the form:

O_T,
O_Ti 10Ti _ OTi _ P_T, + _, - &

_,_ + r__ + r_-_ o_2 -

where T, is the ion temperature, _i is the Spitzer-Harm ion thermal conductivity:

_i = 1.35 ×10 -12T_/2-
In Ai

(31)

(32)



andthe equation coefficients are:

r_ -

r_ =

The ion energy source term Si is given by:

hi O_i 3
+ 2PRvTr Or

O_i 3

Oz _pRv,

pR + _ + O_ ]

(33)

Si = q'v + AQei (34)

where the first term on the right represents ion heating by viscous dissipation, and the second term again

represents the energy exchange between the electrons and ions. Joule heating of the ions is neglected in the
ion source term, as it is assumed the ion current density is substantially smaller than the electron current

density.

The viscous dissipation q'v is: 26

2L O / + oz/ + ;_'V=7 7

(Ovr. vr Ov, ) _+_ \ o_ + _- + _ (35)

where _ represents the second coefficient of viscosity for a monatomic gas:

), + 277 = 0 (36)
3

The set of fluid equations are closed with an ideal gas equation of state relating the plasma pressure, density,

and temperature:

p = (pi + pc) = pR(Ti + T_) (37)

IIe. Finite Difference Formulation

The governing equations have the general form:

02Y OY OY O:Y

/ = _-_ + _-/+ _-_ + _-b_-_ + _0r + s (3s)

where the an denote nonconstant coefficients and S represents a possible source term. The coupled form

of the equations hinders an analytic solution, and suggests the use of an iterative numerical approach. The

equations are written in finite difference form, and solved on a uniform rectangular grid using a generalized

Newton-Raphson iteration method, zs Second derivatives are represented by a second-order central difference
formulation:

O_Y Y(j,i + 1) - 2Y(j,i) + Y(j,i- 1)

Or2 - (A_)2

02Y Y(j + t,i) - 2Y(j,i) + Y(j - 1,i)

0_2 - (Az)2

(39)



wheretheindexj represents nodal points along the axial grid direction, i represents nodal points along the

radial grid direction, and Ar and Az are the radial and axial grid spacings, respectively. First derivatives

are written using a first-order switching scheme, which is based upon the sign of the coefficients multiplying
the derivatives: 2s

OY _ -

At _2 < 0

(40)

Y(j÷l,i)-Y(j,i)

OY a, a3 > 0

Oz _= r _Ah_
az or3 < 0

This scheme preserves the dominance of the F(j, i) term and assures stability of the numerical solution.

Once written in their finite difference analogs, each equation is regrouped into the general form:

X = aoY(j, i) + alY(j, i + 1) + a2Y(j, i - 1) + a3Y(j + 1, i) + a4Y(j - 1, i) + S(j, i) (41)

where the an are nonconstant coefficients, which must be evaluated at each grid location. The generalized

Newton-Raphson iteration method

F

Y(j, i) = Y(j, i) - w [OF�OF(j, i)] (42)

is then used to iteratlvely solve each finite difference equation. An over-relaxation factor w is used to speed

convergence; its value lies between 1 and 2, and is determined through trial and error for each equation being
solved.

Program execution is presented schematically in Figure 2. The fixed grid is divided into 50 radial by 100

axial nodes, and each equation is iterated first in the axial and then in the radial direction until a relative

convergence criteria is satisfied (typically to within a tolerance of 10-4). The process is repeated for each
equation in turn, and the entire loop through the full set of equations is repeated until the exhaust velocity

and plasma potential have each converged to within lea of their previous loop values.

Thrust, Specific Impulse, and Flow Efficiency

Two complementary methods are used to calculate the total thrust, providing an independent check of

the thrust value and allowing an estimate to be made of the various force components. The first method
calculates the total electromagnetic thrust by numerically integrating the axial j x B body force over the

total current carrying volume, including regions downstream of the thruster exit. Pressure forces generated
within the thruster are numericaily integrated over the inner surfaces of the thrust chamber, and combined

with the electromagnetic thrust to estimate the total thrust:

F = /v,o,(fx B),dVtot + f5,¢ pdSt,; (43)

where Vtot denotes the total current carrying volume and Stc denotes surface regions within the thrust
chamber.

A second thrust calculation is performed using:

(44)

10



Thevelocityat theexitplaneof the thruster (v¢zit) is given by:

E, p(ja, i)v_ (ja, i) (45)
v_xit = __,_p(ja, i)v, (ja, i)

where the axial index ja denotes the anode exit plane and the radial integration extends from the thruster

centerline to the inner anode radius. The integration of the electromagnetic body force is performed over the

current carrying volume ezternal to the thruster (Vo,_t). The pressure force term corresponds to an imbalance

between the pressure at the anode exit plane (pexit) and the background gas pressure (Pt,_,_k), evaluated over
the thruster exit area A,. Note that the velocity at the thruster exit plane does not in general equal the

MPD thruster exhaust velocity, due to the additiona! electromagnetic acceleration which may occur outside

the thrust chamber and the imbalance of pressure forces at the exit plane.

Once the total thrust F is calculated, the specific impulse (I,p) and plasma flow efficiency (r//) are found

via:

F F 2

I,p -- mg r/! - (2dnP) (46)

where rh is the propellant mass flow rate, 9 is the acceleration of gravity (9.8 m/s2), and P is the power

deposited in the plasma, equal to the plasma voltage multiplied by the discharge current. The model does

not incorporate electrode effects, hence the total discharge voltage I necessary for a prediction of the total
thruster efficiency cannot be calculated. Because electrode power losses may consume a significant portion

of the total thruster power, 3 experimentally measured thruster efficiencies will generally be much lower than

the calculated plasma flow efficiency 7/I" Nevertheless, the flow efficiency provides a valuable benchmark

against which various thruster geometries can be compared.

IId. Starting Values and Boundary Conditions

Code input consists of the thruster discharge current, propellant ion mass (amu), propellant mass flow

rate, geometric boundary conditions, and a host of additional options such as maximum bulk electrode

temperatures, background gas pressures (to model facility effects), and initial estimates for the plasma

transport coefficients. Ion temperatures are typically set to 3000 K at electrode and insulator surfaces, and

electron temperatures are assumed to be continuous into the surfaces (OTe/On = 0). Vacuum tank pressures
are set between 1.3×10 -_ and 1.3×10 -4 Pa (10 -4 and 10 -6 torr, respectively). No appreciable difference

is found in calculated thruster performance using either background pressure value. The inlet velocity vo is
assumed to be sonic and uniform at the backplate. The inlet density Po is assumed to be uniform and is

calculated from the 1-D continuity equation, rh = povoAo, where At) is the exposed backplate surface area.

Radial velocities are initially set to zero, and are defined by symmetry to remain zero along the centerline.

Initial temperatures throughout the calculation region are set to the bulk electrode temperatures. Initial

velocities and densities in the calculation region are set to their values at the backplate. A no-slip boundary

condition on velocity is employed at all insulator and electrode surfaces.

The electrodes are modeled as equipotential surfaces. Electric fields which enter perpendicular to electrode

surfaces satisfy the condition 0E/0ff:0, where h denotes a unit vector normal to the surface. Electric fields

lying along electrode surfaces are set to zero, consistent with equipotential surface boundary conditions.
Insulator surfaces support parallel electric fields, but zero current (due to an assumed infinite dielectric

resistivity) and zero perpendicular electric fields (due to an assumed infinite relative dielectric permittivity).
The magnetic stream line ¢ is set equal to -/zoJ/(2r) along the backplate, zero along the centerline, and is
assumed to be continuous at both the outer radial grid boundary and and downstream axial grid boundary.

Setting ¢=0 at the thruster exit plane would prevent the current from blowing out of the thruster, while

setting 0=0 at the downstream grid boundary might artificially compress the current blown downstream.

IThe total discharge voltage is the sum of the plasma and electrode fall voltages.
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To shorten loop convergence times, the temperature and velocity components are averaged with their pre-

vious loop values. This damps out minor fluctuations as a solution is approached, allowing more rapid

loop convergence. Tests performed with and without smoothing yield essentially identical results. Model

convergence with smoothing is typically obtained within 10-12 loops through the equations, requiring ap-
proximately 30 CPU minutes on a VAX-9000 computer. The code has not yet been optimized for a CRAY

computing system.

III. Results and Discussion

Comparison with Experiment

The two-temperature self-field MPD thruster code was tested against the experimental performance of the

Princeton University extended anode thruster. 29 The extended anode thruster, shown schematically in Figure

3, consists of a cylindrical 3.2 cm radius copper anode surrounding a 0.95 cm radius thoriated tungsten

cathode. The anode and cathode lengths are 21.6 cm and 20 cm, respectively. Argon propellant is injected

through an insulating boron nitride backplate, with either all of the propellant injected near the anode
radius, or with half of the propellant injected through an annulus near the cathode base and half through

a ring of 12 evenly spaced ports located 2 cm radially from the thruster centerline. For an argon mass flow

rate of 6 g/s, the onset of thruster instability was observed to occur at a discharge current of approximately

21 kA for 50:50 propellant injection, and at approximately 41 kA for all-anode gas injection.

The present two-temperature code and a previous single-temperature version 25 of the model were used to

predict the performance of the extended anode MPD thruster. Calculated and experimental thrust values are

plotted in Figure 4, measured total voltage-current and predicted plasma voltage-current characteristics are

shown in Figure 5, and predicted flow efficiencies are displayed in Figure 6. Both models predict the thrust

fairly accurately, but diverge from the experimental values at currents approaching 21 kA (dashed vertical line

in Figure 4). No steady-state solution was obtained with the two-temperature model for discharge currents

above this value. The predicted plasma potentials correctly reproduce the trend of the experimentally

measured voltage-current characteristics, but are consistently lower by approximately 40 volts, reflecting the

lack of electrode fall calculations in both models. The slightly higher flow efficiencies predicted by the two-
temperature model result from the more accurate calculation of the transport coefficients, which primarily

impact the viscous loss terms (through the coefficient of viscosity, Eqn. 16) arid the predicted plasma voltage

drop (via the electrical conductivity, Eqn. 7a). The single temperature model overestimates the viscosity

coefficient, which depends upon the (typically lower) ion temperature, and underestimates the electrical

conductivity, which is a function of the (typically higher) electron temperature. For the cases considered,

the viscous drag is small compared to the total thrust (typically less than 1%), and may be neglected.
However, the higher electrical conductivity lowers the predicted plasma potential (and consequently the

power deposited in the plasma), hence for similar thrusts the calculated flow efficiencies are somewhat

higher. For the two-temperature model, the flow efficiency increases from 40% at 10 kA to around 50% at 21

kA, at which point steady-state convergence could not be obtained. As discussed earlier, the flow efficiency
significantly overestimates the total thruster efficiency. The calculated plasma voltage at 20 kA is I7 volts

(Figure 5), yielding a flow efficiency (Eqn. 46) of nearly 50%; however, the measured discharge voltage is
approximately 70 volts, yielding a total thruster efficiency of only 15%. Such discrepancies underscore the

need to develop and incorporate accurate electrode {'all models into MPD thruster simulations.

Both the one-temperature and two-temperature self-field models assume uniform gas injection at the back-

plate, which corresponds most closely to the 50:50 propellant split used in the experiments. As noted above,

the onset of thruster instability was reported at a discharge current of approximately 21 kA using 50:50

gas injection. The lack of steady-state convergence in the two-temperature model for discharge currents
exceeding the onset current was not anticipated, and an attempt was made to determine if such an effect
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occurred when modeling other cylindrical geometry thrusters. Two thruster geometries were selected from
the extensive set of experimental onset parameters catalogued by Preble. 1° The first thruster had a cathode

with a radius of 0.95 cm and a length of 5.8 cm, and an anode with an inner radius of 5.1 cm and a length
of 6.0 cm. The argon propellant was injected with a 50:50 split at a mass flow rate of 6 g/s. The onset of

thruster instability was experimentally measured at _ discharge current of around 19-20 kA, corresponding

to a JZ/th value of 6.0-7.0 x 10 l° A2-s/kg. The second thruster consisted of a cathode with a radius of 0.47

cm and a length of 3.2 cm, and an anode with an inner radius of 2.8 cm and a length of 3.2 cm, operated with

an argon mass flow rate of 3 g/s. The onset of instability for this thruster occurred at a discharge current

of approximately 15-16 kA, corresponding to a J2/rh value of approximately 7.5 - 8.5 x 101° A2-s/kg. The
two-temperature model was run for both thruster geometries over a range of J2/th values, with the results

shown in Figure 7. The solid data points denote converged steady-state code solutions, and the open data

points signify the range of performance variation obtained as the code attempted to find a steady-state

solution. The dashed vertical lines represent the experimentally determined minimum and maximum values

of the onset current for the two thrusters, which varied due to the method of propellant injection and slight

adjustments to the cathode lengths. In general, the model does not converge for onset parameters within
20% of the experimentally determined values. This is rather remarkable, as the single-fluid equations do

not support plasma instabilities, and the propellant is already assumed to be fully ionized. Numerically, the

lack of convergence appears in the set of fluid equations, characterized by oscillations in both the ion and

electron temperatures and the fluid density values (which are manifested in the calculated plasma potentials

and exhaust velocities, preventing the numerical convergence criteria from being satisfied). It is possible that
the plasma conditions leading to thruster onset canbe modeled within the single-fluid approximations, but

where the plasma would dissipate energy via instability processes, the model instead simply oscillates about

a steady-state solution. The incorporation of additional energy dissipation mechanisms, such as higher-order

ionization or microinstability effects, may thus provide significant insight into the mechanisms responsible
for the onset of thruster instabilities, 2°,3°,31 and requires further investigation.

Geometric Scaling Analysis

A limited set of computer runs were performed to assess the effect of geometric scale changes on self-field

MPD thruster performance. Table 1 !ists the matrix of cylindrical thruster geometries chosen for comparison.

The first geometry set (MPDT-1) consisted of a 0.5 cm radius cathode, surrounded by a 2.5 cm radius anode.

The second set (MPDT-2) doubled the anode radius to 5.0 cm, but kept the cathode radius at 0.5 cm. The
third set kept the anode radius at 5.0 cm, but increased the cathode radius to 1.0 cm. For each combination

of radii, the electrode lengths were scaled from 1 to 5 times the anode radius (with equal anode and cathode
lengths assumed), yielding 15 cylindrical thruster geometries. The argon propellant mass flow rate was kept

constant at 1 g/s, and was assumed to be fully ionized for all cases. Four J2/rh values, ranging from 2.5 × 101°
AZ-s/kg to 1.0x 1011 AU-s/kg, were evaluated for each geometry. Results of the numerical simulations for

each thruster geometry are presented below.

_DT-!=I. Thrust characteristics for the 2.5 cm anode radius, 0.5 cm cathode radius thruster are

presented in Figure 8a. The thrust remains fairly constant with increasing electrode length for J2/rh values

of 2.5xl01°A2-s/kg and 5.0× 101°A2-s/kg. At J_/m=7.5× 101°A2-s/kg the thrust remains fairly constant

for la/ra (anode length to anode radius) values less than 3; however, steady-state solutions could not be

obtained for l_/ra > 4. Only one steady-state solution was found for J2/rh--1.0× 10tlA=-s/kg, at la/ra = 1;

the model would not converge for larger electrode lengths. The maximum thrust of 16.5 N occurs for l,,/r,
and J2/rh = 1.0 × 1011 A_-s/kg, corresponding to a specific impulse of 1680 seconds.

If a lack of convergence in the steady-state code does reflect unstable thruster operation, as discussed in

previous sections, then it would appear for this geometry that higher d2/rh values drive the design toward

shorter electrode lengths, with optimal l,/r, ratios of around unity. It is thus tempting to conclude that
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l_/r_ ratios should be kept at unity for this thruster under all operating conditions; however, competing
with this effect is the requirement for high flow efficiencles. Figure 8b plots the flow efficiency versus l_/r_ as

a function of J2/rh. At 2.5 x 101°A_-s/kg, the flow efficiency dramatically increases with increasing thruster

length from roughly 48% at l_/r_ -- 1 to over 60% at l_/ra = 5, where the flow efficiency begins to level
off. The increasing efficiency is due primarily to a decrease in the calculated plasma potentials (Figure 8c);

longer electrodes provide a lower current density, which decreases the electric field and lowers the plasma

potential. At the higher J2/rh value of 5.0xl01°A2-s/kg, the flow efficiency increases from roughly 63% at

la/r_ = 1 to around 68% at l_/r_ -- 2, after which the efficiency remains fairly constant with increasing
thruster length. At the still higher J2/rh value of 7.5 x 101°A2-s/kg, the flow efficiency only slightly increases

with increasing electrode length, and the simulation was unable to converge for la/ra >_ 4. The efficiency

at J2/th = 1.0 x 1011A2-s/kg and Ia/r_ --1 was approximately 65%, comparable to the efficiency obtained

at J2/rh -- 7.5 x 101°A2-s/kg for the same l_/ra ratio. Steady-state convergence was not possible for

J_/dn -: 1.0 x 1011A2-s/kg and l_/ra :> 2. As noted prexriousiy, a trade-off must thus be made between

efficient operation at lower J2/rh values, which requires longer electrode lengths, and thruster stability
requirements, which drive the electrode design toward shorter electrode lengths for higher values of J2/rh.

MPDT-2. The second geometry set chosen for simulation retained the same cathode radius of 0.5 cm,

but doubled the anode radius from 2.5 cm to 5.0 cm for a thruster aspect ratio of 10. The steady-state code

was able to converge for only a few operating conditions, as illustrated in Figures 9a through 9c. Convergence

was obtained for J2/rh values of 2.5x 10a°A2-s/kg when la/r_ _< 3, and 5.0x 101_A2-s/kg when l,_/r,_ -: 1.

Convergence could not be obtained for higher J2/gn values, even with the shorter electrode lengths. Thrust
(Figure 9a) decreases with increasing electrode length at the lower J2/rh value, while the flow efficiency

(Figure 9b) remains constant out to la/ra _- 2, after which the flow efficiency also declines. The maximum
calculated thrust, at l_/r_ -- 1 and J2/rh--5.0xl01°A2-s/kg, was approximately 16 N, corresponding to

a specific impulse of roughly 1630 s. These _results indicate that, for this larger aspect ratio thruster,

shorter electrodes are preferable under all operating conditions. The flow efficiency in the stable operating

regions is approximately 75%, higher than the flow efficiencies found under similar operating conditions in
MPDT-1. Unfortunately, MPDT-2 appears to be limited to rather low values of J2/dn before the onset of

thruster instability, and because specific impulse scales as J2/dn, the utility of such a device would be greatly

restricted. The reduced stability of this large aspect ratio thruster agrees with the general results of Preble's
onset analysis, l° which found that smaller aspect ratio thrusters achieved higher values of J2/rh before the

onset of thruster voltage oscillations.

MPDT-3. The third set of geometries investigated, MPDT-3, retained the larger anode radius of 5.0

cm but doubled the cathode radius to 1.0 cm, returning the thruster aspect ratio to 5. Predicted thrust,

voltage, and flow efficiencies versus la/r_ are plotted in Figures 10a through 10c as functions of J2/th. The

reduction in aspect ratio increased the parameter space for steady-state code convergence, indicating that

stable thruster performance may be obtained over a wider range of operating conditions for small aspect ratio

thrusters (in agreement with Preble's onset survey). Thrust values for the lower J2/gn values agree fairly well

with the thrust values predicted for MPDT-1, which is to be expected for self-field thrusters with similar
aspect ratios. However, only one steady-state solution was obtained for MPDT-3 at J:/rh=5.0×101°A 2-

s/kg, at la/ra = 1, and no steady-state solution was obtained at J2/rh=l.Ox 1011A2-s/kg. Although the

aspect ratios were the same, the larger electrode radii in MPDT-3 reduced the stable operating regime of
the thruster. Additional differences are observed in the flow efficiencies of each thruster. Whereas the flow

efficiency steadily increased with l_/ra at J2/in=2.5x 101°A2-s/kg in MPDT-1, the flow efficiency increased

and peaked at la/ra=4 in MPDT-3, after which the flow efficiency decreased with increasing electrode

length. At J2/rh=5.0x 10X°A2-s/kg, the flow efficiency increased in MPDT-1 until l_/ra=2, after which the
flow efficiency remained approximately constant. However, the flow efficiency steadily decreased in MPDT-3

with increasing electrode length under the same operating conditions. Both trends may be explained by

comparing the thrust (Figure 10a) and plasma voltage values (Figure 10c). At J2/rh--2.5xlO_°A2-s/kg,
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thethrustremainsfairly constantfroml,/r_ = 1 to 4, then drops approximately 5% as la/r_ is increased

from 4 to 5. The voltage, however, drops almost 30% as lairs increases from 1 to 4, then remains fairly

constant as la/ra changes from 4 to 5. Referring to Equation 46, the nearly constant thrust, coupled with

the decreasing plasma voltage, results in an increasing plasma flow efficiency for 1 _ la/r_ < 4. As l_/r_

is increased to 5, the plasma voltage levels off and the thrust decreases, resulting in a lower plasma flow

efficiency. At J2/rh=5.0x 101°A2-s/kg, both the thrust and plasma voltage are decreasing with increasing

la/ra in such a manner that the plasma flow efficiency decreases with increasing la/ra as well. It is of
interest to note that MPDT-1 is the half-scale c0_terpart of MPDT-3, and in partial agreement with

Gilland's results 11 the performance of these half-scale and full-scale thrusters are indeed similar for a limited

parameter space. However, for these cylindrical self-field thrusters, the similarity in performance starts to
diverge at higher values of J_/gn and larger values of la/r_, even though the mass flow rates were equivalent.

The maximum calculated thrust for MPDT-3 was roughly 14 N for l_/r_ : 1 and J2/fi_=7.5× 101°A2-s/kg,

which corresponds to a maximum specific impulse impulse of approximately 1430 s.

Stability Diagrams. Based on the preceding results, stability diagrams were generated for the three

sets of thruster geometries (MPDT-1 through 3) as a function of l,/r_ versus J2/rh (Figures 11-13). Regions

of steady-state code convergence are depicted as "stable", and nonconvergent regimes as "unstable". Regions

without data were left unshaded. Though limited in extent, fairly definite patterns emerge from the diagrams.
In general, the thruster simulations were nonconvergent at higher values of J2/rh and larger values of l_/r_,

with the effects becoming more pronounced for the larger aspect ratio thruster. The smaller diameter
thruster (MPDT-1) had the largest stable operating space, followed by MPDT-3 (same aspect ratio, but

twice the size) and MPDT-2 (with the same anode diameter as MPDT-3 but twice the aspect ratio). Of
particular interest are the slopes of the lines denoting stable operation; the slopes are identical for MPDT-1

and MPDT-2, which had identical cathode radii but different aspect ratios. The stability region for MPDT-3,

in which the cathode radius was doubled, has twice the slope of the other stability regions, even though the
aspect ratios of MPDT-1 and MPDT-3 are identical. In addition, the maximum value of J2/rh for stable

operation was lower for the larger diameter thruster (MPDT-3) with the same aspect ratio as the smaller

thruster (MPDT-1), and was halved when the thrusLer_spect ratio was doubled (MPDT-2 versus MPDT-1).

These intriguing correlations prompted an attempt to derive a stability scaling relation for the three thruster

geometries, and a scaling relation was found of the form:

< - - s/k9 (47)c- ro 5 +4

where (J2/rh)_ denotes the maximum J2/gn value (in A2-s/kg) for stable thruster operation and r_, I_, r_,
and L. are the anode radius and length and cathode radius and length, respectively, measured in centimeters.

The inverse scaling with cathode radius is apparent from the stability diagrams, and the factors of 5 and
10 appearing in the expression are apparently rel_ted to the maximum values of la/ra and %/re used in

this limited study. The remaining terms are not intuitively obvious, however, and an effort was undertaken

to determine the validity of the scaling relation for other cylindrical self-field thrusters. Once again, the

extensive data base compiled by Preble 1° proved invaluable for this task. A comparison of experimentally

determined onset values with the values predicted by Eqn. 47 are listed in Table 2 for thruster geometries

which fall within the geometric constraints of the model: straight, cylindrical self-field thrusters, with uniform

argon propellant injection, which satisfy the conditions l_/r_ < 5, r_/r_. < 10, r_ >__2.54 cm, r,: .'> 0.5 cm,

and approximately equal electrode lengths (la _ I¢). The numerical simulations assumed equal electrode
lengths, and the factor of (l_/la) in Eqn. 47 arises from an examination of the Preble data set. In general,

the predictions of Eqn. 47 and the experimental data agree fairly well, with better conformity at shorter

length electrodes. Thus, for thruster geometries which fall within the geometric constraints outlined above,
the stability scaling relationship may be useful as a predictor of thruster instability.
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The above scalingrelationwas used to predictthe stabilityperformance ofan MPD thrusterwith a cathode

radiusof I cm and anode radius of 10 cm, the full-scalecounterpart to the MPDT-2 thrusterabove (with

an aspect ratioof 10). Based on the above resultsfor MPDT-2, a value of la/ra= I was chosen toimprove

the region of operationalstability.Insertingvaluesfor ra, re,and la/r_ into Eqn. 47 yieldsa maximum

J2/rh valueof 2.5× 101°A2-s/kg forstablecode convergence (and,based on the previous arguments, thruster

stability).The two-temperature model was then used tosimulate the thruster,with a mass flowrate ofI g/s

(argon) and dischargecurrents of 5 kA and 7.5 kA; the model converged to a steady-statesolutionfor the

5 kA discharge current,but did not converge for the 7,5 kA value.The mass flow was then raisedto 4 g/s,

with dischargecurrents of 10 kA and 14 kA; the simulationconverged for the lower dischargecurrent,but

no steady-statesolutioncould be obtained for the higher value. The thrustergeometry was then changed,

keeping the anode and cathode radiithe same but extending l_/r_ to 3. The stabilityequation predicts

a maximum J_/_n value of 1.25x 101°A_-s/kg. The code was operated with a mass flow rate of 1 g/s at

discharge currents of 3.5 kA and 5 kA; the model converged for the lower discharge current but not for the

higher value. It must be reiterated that the above results only show that the stability equation, based upon
the performance of a numerical model, can predict the stable regions of model operation; it is the somewhat

tenuous association between steady-state model convergence and experimentally measured onset data that

allows such speculation concerning stable thruster operating regimes.

Based on the above results, and their associated limitations, the following observations may now be tenta-

tively added to the list of maxims discussed in the introduction. For cylindrical self-field MPD thrusters,

operated on argon and satisfying the geometric constraints listed above, stable operation at higher values of

J2/rh requires smaller ratios of la/r_. At lower values of J:/rh, longer electrodes are required to increase

the thruster flow efficiency. Smaller aspect ratio thrusters are generally more stable than larger aspect ratio

thrusters of equivalent anode diameter, and larger aspect ratio thrusters require shorter electrode lengths

for stable operation. Smaller diameter thrusters are in general more stable over a wider range of operating

conditions than their large-scale geometric counterparts. These preliminary results are based on a very lim-

ited set of numerical data, and such important effects as partial versus full ionization, nonequivalent anode

and cathode lengths, nonuniform propellant injection, different propellant species, and the effects of flared

anode geometries (to name but a few) remain to be investigated.

IV. Concluding Remarks

A two-dimensional, two-temperature, single fluid magnetohydrodynamlcs code was developed to predict

steady-state, self-field MPD thruster performance. The governing equations and numerical methods of

solution were outlined and discussed. Experimental comparisons with the Princeton extended anode MPD
thruster were used to benchmark model predictions. The model accurately predicts thrust and reproduces

trends in the discharge voltage for discharge currents below experimentally measured onset values. However,
because the model does not include electrode effects the calculated voltage drops are significantly lower

than experimentally measured values. Predictions of thrust and flow efficiency are made for a matrix of 15

cylindrical thruster geometries over a range of J2/rh values, assuming fully ionized argon propellant with

a mass flow rate of 1 g/s in each case. The simulations indicate that thruster operation at high values of

J2/dn requires short electrode lengths for stable operation. At lower values of J2/rh, longer electrodes are

required to improve the thruster flow efficiency. Small aspect ratio thrusters are in general more stable than
larger aspect ratio thrusters of equivalent anode diameter, and larger aspect ratio thrusters require shorter

electrode lengths for stable operation. Smaller diameter thrusters are generally more stable over a wider

range of operating conditions than their large-scale geometric counterparts. A maximum specific impulse of
1680 s was achieved with a 2.5 cm anode radius, 0.5 cm cathode radius thruster with l_/r_, = t operated

at J2/rh -- 1.0 x 1011 A2-s/kg. A scaling relation to predict the onset of self-field thruster instability as a

function of geometry was derived and tested agalnst published onset data. Withln the constraints imposed

by the model, the scaling relation could generally predict onset to within 20% of the experimental values.
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MODEL j2/m (109 A2 s/kg)
GEOMETRY 2.5 5.0 7.5 10.0

MPDT-I la/ra

! S S S S

ra=2.5 cm 2 S S S U

re=0.5 cm 3 S S S U

ra/rc'-5 4 S S U U
5 S S U U

MPDT-2 la/r_
t S S U U

r_:5.0 cm 2 S U U U

re:0.5 cm 3 S U U U

r_/rc=lO 4 U U U U
5 U U U U

MPDT-3 l_/ra
1 S S S U

rG=5.0 cm 2 S S U U

rc=l.0 cm 3 S S U U

r_/rc=5 4 S S U U
5 S S U U

Table 1. Matrix of thruster geometries and J_/fn values used in numerical simulations, ra, re, and l_ denote

anode radius, cathode radius, and electrode length, respectively. "S" denotes steady-state solutions, "U"

denotes lack of steady-state code convergence. All data for rh = 1 g/s, Ar.
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PREBLE r, rc 1= /¢ J2/rh (109 A2-s/kg)

ENTRY# (¢m) (¢m)(cm) (cm) EXPTI EQN. 47
i' 2.8 0.5 3.2 3.2 88 92

19 5.1 0.95 6.0 1.7 23 20

26 5.1 0.95 6.0 2.3 28 27

15 5.1 0.95 6.0 25 43 30
77 5._ o.g5 5.72 2.54 s5 s2
79 5.1 0.95 5.7'2 2.54 35 32

27 5.1 0.95 6.0 3.2 38 38

28 5.1 0.95 6.0 4.35 48 52

53 5.1 0.95 6.0 5.0 67 60

23 5.1 0.95 6.0 5.3 80 63

29 5.1 0.95 6.0 5.8 60 69

30 5.1 0.95 6.0 6.91 74 82

31 5.1 0.95 6,0 I0.0 74 119

90 5.1 0.95 6.0 i0.0 85 119

92 5.1 0.95 6.0 10.0 88 119

16 5.1 0.95 6.0 10.0 88 119

91 5.1 0.95 6.0 10.0 94 119

33 5.1 0.95 6.0 10.0 131 119
86 5.1 0.95 6.0 12.4 88 82

45 5.1 0.95 6.0 I0.0 96 80

Table 2. Comparison of experimentallydetermined onset values(EXPT) with valuespredicted by stability

scaling relation (Equation 47).

Figure 1. Schematic of a self-field MPD thruster.
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PROGRAM OUTLINE

ConJervat|on of Mass ---. Density (p)

Conservation of Momentum ----* Velocity (V,, V01 V,)

Conservation of Energy ---. Temperatures (T,, Ti)

Equation of State ---, Pressure (P)

Evaluate Transport CoefFicients, Ha]l Parameter, etc...

FLUID LOOP

FIELD LOOP

l
Convargenee on Plum- Potenti_ (_,_,,, _< 0.01_,_)

'" YES Evaluate Thrust, Specific Impube. Flow Eflqelency, ...

Wrlte Data FUes

Done

l
Ohm's Law, MaxweU's Equat|ous --_ Induced FieldJ LBw)

Maxwell (Ampere's) Equation ---. Current Deus[ty (j)

Ohm's Law ---, Electric F|eld (E -, Plasma Potentlal)

Evaluate Energy Sources, S]nkm, etc...

I

Figure 2. Program outline of MPD thruster numerical simulation.
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Figure 3. Schematic of Princeton University extended anode MPD thruster _9,
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THRUST CHARACTERISTICS

EXTENDED ANODE MPDT (Ar- 6 g/s)
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Figure 4. Thrust character]stlcs for the extended anode MPD

thruster, rh : 6 g/s (Ar). l-T: single temperature code, 2-T:

two-temperature code results. Dashed vertical line corresponds

to experimentally measured onset current with 50:50 propellant

i_eetion.

VOLTAGE-CURRENT CHARACTERISTICS

EXTENDED ANODE MPDT (At: 6 g/s)
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13 PLA$HAV (Z-T}

Figure 5. Measured total voltage _'---") and calculated plasma

voltage (symbols) for the extended anode MPD thruster, rn :

6 g/s (At). l-T: single temperature code_ 2-T: two-temperature

code results. Dashed vertical llne corresponds to experimentally

measured onset current with 50.50 propellant injection.

FLOW EFFICIENCY vs. DISCHARGE CURRENT

EXTENDED ANODE MPDT (Ar: 6 g/s)
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13 Z-T _L

CURRENT (kA)

Figure 6. Calculated plasma flow et_clency for the extended an-

ode MPD thruster, 7h = 6 g/s (At). I-T: single temperature

code, 2-T: two-temperature code results• Dashed vertical Hne

corresponds to exper_nentally measured onset current with 50:50

propellant injeetlon.

STEADY-STATE CONVERGENCE TEST

PREBLE THESIS COMPARISON
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Figure 7. Steady-state, two-temperature model convergence tests.

MPDT-a: r_ = 5.1 cm, P_ = 0.95 cm, l_ : 6.0 cm, 4 = 5.8 cm, rh

= 6 g/s (At). MPDT-b: r, - 2.8 cm, r_ = 0.475 cm, l° -- 3.2 cm,

le = 3.2 cm, dn = 3 g/s (Ar). Dashed vertical lines correspond to

experimentally measured minimum and maximum onset current

values. (S): Stable, (U): Unstable_code convergence.
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MPDT-I: THRUST vs. LENGTH/RADIUS

(to = 2.5 cm, r, = 0.5 cm, I g/s Ar)
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Figure 8(a). Calculated tkrnst characteristics for MPDT-I.

($): stable, (U): mutable code conve:gence.

Figure 8(b). Calcul,_ted flow e_clencie_ for bfPDT-I (steady-

state solutions).

MPDT-I: VOUI'AGE vs. LENGTH/RADIUS

(r. = 2.5 cm, r_ = 0.5 c.m, I g/s Ar)
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Figx_re 8(c). Calculated plasms poien_ for MPDT-I (stetuly-

state solutions).
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XIPDT-2: TIIRUST vs. LENGTH/RADIUS

(to = 5.0 cm, rc = 0.5 cm, I g/s At)
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MPDT-2: FLOW EFFICIENCY _.'s. I,ENCTH/RAD1US

(to = 5.0 era, r, = 0.5 era, 1 g/_ Ar)
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Figure 9(a). Calculated thrust characteristics for MPDT-2.

(S): stable, (U): unstable code convergence.
Figure 9(b). Calculated flow efficiendes for MPDT-2 (steady-
state solutions).

v

Z
m

0

Z4

i

ZO-

t°

tS-

_S

I0

MPDT-2: VOLTAGE vs. LENGTH/RADIUS

(to = 5.0 era, r, : 0.5 cm, 1 g/s Ar)
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Figure 9(c). Calculated plasma potentials for MPDT-2 (steady-

state solutions).
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MPDT-3: TIIRUST vs. LENGTI1/I:[ADIUS

(r° = 5.0 cm, re = 1.0 cm, 1 g/s Ar)
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Figure lO(a). Calculated thrust characteristics for MPDT-3

(S): stable, (U): unstable code convergence.

Figure 10(b). Calculated flow e_ciencies for MPDT-3 (steady-

state solutions).

IvlPDT-3: VOLTAGE vs. LENGTH/RADIUS

(to = 5.0 cm, r_ = 1.0 cm, I g/s Ar)
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Figure 10(c). Calculated plasma potentials for MPDT-3 (steady-

state solutions).
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MPDT-I: STEADY-STATE MODEL CONVERGENCE MPDT-2: STEADY-STATE MODEL CONVERGENCE
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Figure 11. Numerical stability diagram, MPDT-1. Symbols de-

note numerical dnta points; "stable" denotes code convergence,
"unstable" denotes lack of steady-state convergence. Sloped

lines are interpolations to the data points.

Figure 12. Numerical stability diagram, MPDT-2. Symbols de-

note numerical data points; "stable" denotes code convergence_

"unstable" denotes lack of steady-state convergence. Sloped

lines are interpolations to the data points.

MPDT-3: STEADY-STATE MODEL CONVERGENCE

_ e,:-; "-,", :,"-."-?."dI_ ',.%"4 o_,':,_
•%%0 ,......,,.::-.;'I.._\.>_,',,1",'..,',:
I'-.',:',;,%',",'%'4.'k\o ,',1.",-,',
"_'",'-",",'.,',","_'\ \"_"_'_'.-'o]_ , ,, ,,-,,-, --..,-,;,,, ,, :,..'.,,., ,,..

C,] ", %, ",. "G C, %."z .f_ v, O, ,© C"C

, -, .,', ,,,,0 %0 0% _00:,-_,bV',',?,',,:,;',",",_',",\\:4".:.",,:,

i I',',",-,%', ",","-)'-:",:o\ ',!.," o cI::
,,%%-, -,:,,',,,,,:,;,,/,.--.:,_,,_o,°'

+, ;-o,,; ","::,jc""2% "-:4_ _,\oo

-1 l l # _l # ] "/ " # ,1 # " "I;,,':-, - -,',:,, ,',,
"'""

,r,l,_(]_,,,-,/_)

%"
, ,

% •

©

©
'©
% .

©

R
'@
% .

©

N

Figure 13. Numerical stability diagram1 MPDT-3. Symbols de-

note numerical data points; "stable" denotes code conversence _

"unstable" denotes lack of steady-state convezgence. Sloped

lines are interpolations to the data points,
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